7. VEKSLER N.D., KAPLUNOV YU.D. and KORSUNSKII V.M., Asymptotic formulas for resonance frequencies in the scattering of a normally incident acoustic wave by a cylindrical shell, Akust. Zh., 36, 3, 1990.

Translated by Z.L.
J. Appl. Maths Mechs, Vol. 55, No. 3, pp. 396-401, 1991

0021-8928/91 \$15.00+0.00
Printed in Great Britain
© 1992 Pergamon Press Ltd

STATIONARY QUASITRANSVERSE SIMPLE AND SHOCK WAVES IN A WEAKLY ANISOTROPIC NON-LINEAR ELASTIC MEDIUM*

A.P. CHUGAINOVA

Two-dimensional stationary simple and shock waves in a weakly anisotropic non-linear elastic medium are considered under the same assumptions as in $/ 1-6 /$, which studied one-dimensional non-stationary simple and shock waves in a prestrained non-linear elastic medium.

The standard analysis of stationary simple and shock waves /7-9/ in the magnetohydrodynamics of a gas with a frozen magnetic field essentially corresponds to a special case of an anisotropic elastic medium. Particular plane selfsimilar boundary-value problems of shock wave reflection from the boundary of an isotropic non-linear elastic half-space were solved numerically in $/ 9,10 /$.

1. Equations describing the behaviour of two-dimensional stationary simple waves. A weakly anisotropic non-linear elastic medium is defined by the elastic potential /1/

$$
\Phi=\rho_{0} U\left(\varepsilon_{i j}, p i^{(k)} \ldots, \ldots, S\right), \quad \varepsilon_{i j}=\frac{1}{2}\left(\frac{\partial w_{i}}{\partial \eta_{j}}+\frac{\partial w_{j}}{\partial \eta_{i}}+\frac{\partial w_{k}}{\partial \eta_{i}} \frac{\partial w_{k}}{\partial \eta_{j}}\right)
$$

Here U is the internal energy of the medium, S is the entropy per unit mass, $\varepsilon_{i j}$ are the components of Green's strain tensor, ρ_{0} is the density in the unstressed state, $p l(k)$ are tensors specifying the deviation of the medium from an isotropic medium, w_{i} is the displacement vector and η_{i} are the Lagrangian coordinates (Cartesian right coordinates in the unstressed state); here and henceforth, $i, j, k=1,2,3$.

The system of three equations of motion in Lagrangian Cartesian variables has the form /2/

$$
\begin{equation*}
\rho_{0} \frac{\partial^{2} w_{i}}{\partial t^{2}}=\frac{\partial}{\partial \eta_{j}} \frac{\partial \Phi}{\partial\left(\partial w_{i} / \partial \eta_{j}\right)} \tag{1.1}
\end{equation*}
$$

and is of hyperbolic type.
We introduce a moving system of coordinates $\xi_{1}, \xi_{2}, \xi_{3}$ in which the motion of the system is steady.

$$
\xi_{1}=\eta_{1}-|\mathbf{W}| t \sin \alpha, \xi_{2}=\eta_{2}-|\mathbf{W}| t \cos \alpha, \xi_{3}=\eta_{3}
$$

where W is a given vector of sufficiently large absolute value. The angle α defines the direction of the vector W relative to the axes $\eta_{1}, \eta_{2}, \eta_{3}$.

Let

$$
\partial w_{i} / \partial \xi_{1}=l_{i}, \partial w_{i} / \partial \xi_{2}=m_{i} ; \partial w_{i} / \partial \xi_{3}=a_{i}
$$

We assume that l_{i}, m_{i}, a_{i} are functions of the two variables ξ_{1} and ξ_{2}. Therefore, we see from the equalities

[^0]$$
\partial a_{i} / \partial \xi_{1}=\partial l_{i} / \partial \xi_{3}=0, \partial a_{i} / \partial \xi_{2}=\partial m_{i} / \partial \xi_{3}=0
$$
that a_{i} are constant ($a_{i}=$ const) and may occur in the description of the anisotropic properties of the medium as parameters.

Using the above notation, we will rewrite the equations of steady motion in the coordinate system $\xi_{1}, \xi_{2}, \xi_{3}$ in the form

$$
\begin{gather*}
\rho_{0} W^{2}\left(\sin ^{2} \alpha \frac{\partial l_{i}}{\partial \xi_{1}}+\cos ^{2} \alpha \frac{\partial m_{i}}{\partial \xi_{2}}+2 \sin \alpha \cos \alpha \frac{\partial m_{i}}{\partial \xi_{1}}\right)= \tag{1.2}\\
r_{i k} \frac{\partial l_{k}}{\partial \xi_{2}}+d_{i k} \frac{\partial m_{k}}{\partial \xi_{1}}+d_{i k}^{T} \frac{\partial l_{k}}{\partial \xi_{2}}+s_{i k} \frac{\partial m_{k}}{\partial \xi_{2}} \\
\frac{\partial l_{k}}{\partial \xi_{2}}=\frac{\partial m_{k}}{\partial \xi_{1}}, \quad r_{i k}=\frac{\partial^{2} \Phi}{\partial l_{i} \partial l_{k}}, \quad d_{i k}=\frac{\partial^{2 \Phi} \Phi}{\partial l_{i} \partial m_{k}}, \quad s_{i k}=\frac{\partial^{2} \Phi}{\partial m_{i} \partial m_{k}}
\end{gather*}
$$

($d_{i k{ }^{\tau}}$ is the transpose of the matrix $d_{i k}$). The quantities $r_{i k}, d_{i k}, s_{i k}, d_{i k}{ }^{r}$ are computed using the given elastic potential Φ. For a weakly anisotropic elastic medium, the potential Φ can be represented as the sum of two terms $\Phi=\Phi_{0}+\Phi_{1} / 1 /$. The first term describes an isotropic non-linear elastic medium without initial strains. The small second term describes the deviation of the internal energy of the material from the isotropic energy. This term is a function of convolutions of the strain tensor with anisotropy tensors. We expand Φ_{0}. and Φ_{1} in powers of l_{i} and m_{i} :

$$
\begin{gather*}
\Phi_{0}=1_{2} \lambda I_{1}{ }^{2}+\mu I_{2}+\beta I_{1} I_{2}+\gamma I_{3}+\nu I_{1}+\xi I_{2}{ }^{2}+\ldots \tag{1.3}\\
+\rho_{0} T_{0}\left(S-S_{0}\right) \\
I_{1}=\mathrm{e}_{i j}, I_{2}=\varepsilon_{i j} \mathrm{e}_{i j}, I_{3}=\varepsilon_{i j} e_{j k} \varepsilon_{k i} \\
\Phi_{1}=B_{1} l_{1}{ }^{2}+B_{2} l_{2}{ }^{2}+B_{3} l_{3}{ }^{2}+B_{4} l_{1} l_{2}+B_{5} l_{1} l_{3}+B_{6} l_{2} l_{3}+B_{7} m_{1}{ }^{2}+ \\
B_{8} m_{2}{ }^{2}+B_{9} m_{3}{ }^{2}+B_{10} m_{1} m_{2}+B_{11} m_{1} m_{3}+B_{12} m_{2} m_{3}
\end{gather*}
$$

Here $\lambda, \mu, \beta, \gamma, v$ and ξ are the elastic moduli of the medium and B_{i} are constants associated with the anisotropy of the material. We shall assume that B_{i} are of the order of $\delta(\delta \leqslant 1$ is the anisotropy parameter).

For the system of Eqs.(1.2) we will seek a solution in the form of a two-dimensional stationary simple wave, i.e., such that $l_{i}=l_{i}\left(\theta\left(\xi_{1}, \xi_{2}\right)\right), \quad m_{i}=m_{i}\left(\theta\left(\xi_{1}, \xi_{2}\right)\right), a_{i}=$ const (θ is a function of its arguments), and the entropy S is constant $\left(\partial S / \partial \xi_{i}=0\right)$. This leads to a system of ordinary differential equations for l_{i} and m_{i} ($\delta_{i k}$ is the Kronecker delta)

$$
\begin{gather*}
\left(C_{1}^{2} \delta_{i k}-b_{i k}\right) d l_{k} / d \theta=0, d m_{\mathrm{k}} / d \theta=-\Psi d l_{k} / d \theta \tag{1.4}\\
\left(\Psi=-\left(\partial \theta / \partial \xi_{2}\right) /\left(\partial \theta / \partial \xi_{1}\right)=-\left(d \xi_{1} / d \xi_{2}\right)_{\theta}\right. \\
C_{1}^{2}=C \cdots 2 \rho_{0} W^{2} \sin \alpha \cos \alpha \Psi \mid \rho_{0} W^{2} \cos ^{2} \alpha \Psi^{2} \\
\left.C=\rho_{0} W^{2} \sin ^{2} \alpha, b_{i k}=r_{i k}-\left(d_{i k}+d_{i k}{ }^{\top}\right) \Psi+s_{i k} \Psi^{2}\right)
\end{gather*}
$$

Let us fix α by a special choice of the axes $\eta_{1}, \eta_{2}, \eta_{3}$ so that in the corresponding axes $\xi_{1}, \xi_{2}, \xi_{3}$ we have the equality $\Psi=0$ on the first characteristic. This choice of the axes is possible if the determinant of system (1.4), treated as a polynomial in Ψ, has at least one real root.

If the elastic medium is linear, the coefficients of the system of Eqs. (1.4) are constant and the equality $\Psi=0$ therefore holds on all the characteristics of the system of Eqs.(1.2). Then, first, we see from the second equation in (1.4) that the quantities m_{i} are constant in the wave. Second, noting that $\partial \theta / \partial \xi_{2}=0$, we conclude that l_{i} depend only on a single variable ξ_{1}, and therefore the direction of wave propagation is known (the normal to the characteristics - the axis ξ_{1} - is known). The system of six Eqs.(1.4) reduces to a system of three equations for l_{i},

$$
\left(C^{2} \delta_{i k}-r_{i k}\right) d l_{k} / d \theta=0
$$

The condition for the determinant of this system to be zero is a cubic equation in C^{2} and for a given W it is used to find the angle α. Note that the restrictions on α are a consequence of the previous requirement $\quad \Psi=0$. The quantity C is the characteristic velocity relative to the medium when the normal to the characteristic is in the direction of the ξ_{1} axis. Since $r_{i k}=$ const, we have $C=$ const.

If the medium is linear and isotropic, the matrix $\left\|r_{i k}\right\|$ has the form $\quad r_{11}=\lambda+2 \mu$, $r_{22}=r_{33}=\mu, r_{i j}=0 \quad$ for $i \neq j$. For transverse waves $\alpha=\arcsin \sqrt{\mu / \rho_{0} W^{2}}$, and for longitudinal waves $\alpha=\arcsin \sqrt{(\lambda+2 \mu) / \rho_{0} W^{2^{2}}}$.

If the elastic medium is weakly anisotropic and weakly non-linear, then $\Psi\left(l_{1}, l_{2}, l_{3}, m_{1}\right.$, m_{2}, m_{3}) is small and the square of the characteristic velocity relative to the medium $C_{1}{ }^{2}$ varies. The wave does not have a unique fixed direction of propagation (the normal to the characteristic is variable), but due to the smallness of non-linearity we may assume that the main variation of the parameters in a simple wave is in the direction of the ξ_{1} axis, i.e., l_{i} are essentially variable in the wave, while m_{i} do not change much (this will be proved below).
2. Two-dimensional stationary simple quasitransverse waves. Quasitransverse waves are waves in which the ratio of the change in the longitudinal component $\left(l_{1}\right)$ and the transverse component $\left(l_{2}, l_{3}\right)$ is a small quantity of the order of the initial shear strain /3/.

Let the strains l_{i} produced by the passage of waves in the medium be small quantities of order not exceeding ε. Then $\Psi=O\left(\varepsilon^{2}\right)$, because the change in the characteristic velocity relative tu the medium $\Delta C^{2}=C_{1}{ }^{2}-C_{1}$ is of the order of $\varepsilon^{2} / 2,3 /$ and Ψ is related to the change in the characteristic velocity. From the second equation in (1.4) we see that the order of change of m_{i} is ε^{3}. We introduce the smallness parameter $\chi=\max \left\{\varepsilon^{2}, \delta\right\}$, where $(\delta \& 1$ is the anisotropy parameter /4/, and in the system of Egs. (1.4) we allow only for terms of order not exceeding $\varepsilon \chi$. Then the three equations for l_{i} in system (1.4) can be solved independently. The quantities m_{i}, together with a_{i}, may be used to describe the anisotropic properties of the medium.

For the variable Ψ we obtain the equation

$$
\begin{equation*}
\left|C_{\mathrm{t}}{ }^{2} \delta_{i k}-b_{i k}\right|=0 \tag{2.1}
\end{equation*}
$$

For quasitransverse waves, we can eliminate the longitudinal component l_{1} by expressing it approximately in terms of the components l_{2} and l_{3}, as in /4/. To prove this statement, let

$$
\begin{gathered}
b_{i k}=b_{i k}{ }^{\circ}+g_{i k} \\
g_{i k}=\frac{\partial^{2} P}{\partial l_{i} \partial l_{k}}-\left(\frac{\partial^{2} P}{\partial l_{i} \partial m_{k}}+\frac{\partial^{2} P}{\partial m_{i} \partial l_{k}}\right) \Psi+\frac{\partial^{2} P}{\partial m_{i} \partial m_{k}} \Psi^{\prime 2} \\
P=\Phi-1 / 2(\lambda+2 \mu) l_{1}^{2}-1 / 2 \mu\left(l_{2}^{2}+l_{3}^{2}\right)
\end{gathered}
$$

where $b_{i k}{ }^{\circ}$ is the matrix corresponding to a linear isotropic medium. From (1.4) for $i=1$ we obtain

$$
\begin{equation*}
C_{1}{ }^{2} \partial l_{1} / \partial \theta=b_{1 k} \partial l_{k} / \partial \theta \tag{2.2}
\end{equation*}
$$

For quasitransverse waves we may approximately take $C_{1}{ }^{2}=\mu+O(\chi)$, because, first, Ψ is small and, second, $C^{2}=\mu$ for transverse waves. Then from (2.2) we have

$$
\begin{gathered}
\mu \frac{\partial l_{1}}{\partial \theta}=(\lambda+2 \mu) \frac{\partial l_{1}}{\partial \theta}+g_{12} \frac{\partial l_{2}}{\partial \theta}+g_{13} \frac{\partial l_{3}}{\partial \theta}- \\
l_{1}=-\frac{1}{\lambda+\mu} \cdot \frac{\partial P}{\partial l_{1}}+l_{1}{ }^{\circ}, \quad l_{1}{ }^{\circ}=\mathrm{const}
\end{gathered}
$$

where the superscript ${ }^{\circ}$ relates to the state in front of the wave. Using this equality, we rewrite the equations of motion (1.4) in the form

$$
\begin{gather*}
C_{1}{ }^{2} \frac{\partial l_{\beta}}{\partial \theta}=\left(\mu \delta_{\beta \gamma}+h_{\beta \gamma}\right) \frac{\partial l_{\gamma}}{\partial \theta}=\frac{\partial}{\partial \theta} \frac{\partial Q}{\partial l_{\beta}}, \quad \beta, \gamma=2,3 \tag{2.3}\\
h_{\beta \gamma}=g_{\beta \gamma}-\frac{1}{\lambda+\mu} g_{1 \beta}^{\circ} g_{1 \gamma}^{\circ}=\frac{\partial F}{\partial l_{\beta} \partial l_{\gamma}} \\
Q=\frac{\mu\left(l_{2}^{2}+l_{3}^{2}\right)}{2}+F\left(l_{2}, l_{3}\right), \quad F=F^{\circ}-\frac{1}{2(\lambda+\mu)}\left(\frac{\partial P}{\partial l_{1}}\right)^{\circ}
\end{gather*}
$$

This system of equations contains two equations for l_{2} and l_{3}. For a medium with anisotropic (1.3), the two-dimensional potential can be represented in the form /1/

$$
\begin{gathered}
F\left(l_{2}, l_{3}\right)=1 / 2(f+g) l_{2}^{2} \div 1 / 2(j-g) l_{3}^{2}-1 / 8^{2} x_{1}\left(l_{2}^{2}+l_{3}{ }^{2}\right)^{2}+s_{1} l_{2} l_{3} \\
\left(f=\mu+B_{2}+B_{3}-\frac{B_{4}^{2}+B_{5}^{2}}{2(\lambda+\mu)}, \quad g=B_{2}-B_{3}+\frac{B_{5}^{2}-B_{4}^{2}}{2(\lambda+\mu)}\right. \\
\left.s_{1}=B_{6}-\frac{B_{5} B_{4}}{\lambda+\mu}\right)
\end{gathered}
$$

rotating the coordinate axes in this plane, we can eliminate the term $s_{1} l_{2} l_{3}$ in the expression for the elastic potential $F / 1 /$. The potential F thus takes the form

$$
F=1 / 2\left(f+g^{*}\right) l_{2}^{* 2}+1 / 2\left(f-g^{*}\right) l_{3}^{* 2}-1 /{ }_{3} x_{1}\left(l_{2}^{* 2}+l_{3}^{* 2}\right)^{2}
$$

where $\quad g^{*}=\left(g^{2}+s_{1}{ }^{2}\right)^{2 / 2}, \quad l_{2}{ }^{*}=-l_{3} \sin \varphi+l_{2} \cos \varphi$

$$
l_{3}^{*}=l_{3} \cos \varphi+l_{2} \sin \varphi, \quad \operatorname{tg} 2 \varphi=-s_{1} g
$$

The asterisk will be omitted in what follows.
The constants f, g, x_{1} have the following physical meaning: the small quantity g is the anisotropy parameter, f is the characteristic velocity when there is no non-linearity and anisotropy and x_{1} is the elastic constant characterizing the non-linear properties of the medium in quasitransverse waves.

For the simplified system of Eqs.(2.3), condition (2.1) is rewritten in the form

$$
\left\|\begin{array}{cc}
h_{22}-C_{\mathbf{1}^{2}} & h_{23} \\
h_{23} & h_{33}-C_{1^{2}}
\end{array}\right\|=0 ; \quad h_{\beta \gamma}=\frac{\partial^{2} F}{\partial l_{\beta} l_{\gamma}}, \quad \beta, \gamma=2,3
$$

Solving the quadratic equation for Ψ, we obtain

$$
\begin{equation*}
\Psi_{1,2}=A^{-2}\left(C^{2}-f+x_{1}\left(l_{2}^{2}+l_{3}^{2} \pm 1 / 2\left(\left(l_{3}^{2}-l_{2}^{2}+2 g x_{1}^{-1}\right)^{2}+4 l_{2}^{2} l_{3}^{2}\right)^{2 / 2}\right)\right) \tag{2.4}
\end{equation*}
$$

We see from (2.4), that Ψ_{1} and Ψ_{2} differ from each another by a quantity of the order of χ. The indexing of Ψ_{i} is such that $\Psi_{1}>\Psi_{2}$ and we correspondingly distinguish between fast quasitransverse waves (Ψ_{1}) and slow quasitransverse waves (Ψ_{2}).

The differential equations for the integral curves of quasitransverse stationary simple waves are obtained from the system of Eqs.(2.2) using (2.4):

$$
\begin{equation*}
\frac{d l_{2}}{d l_{3}}=\frac{l_{2}^{2}-l_{3}^{2}-2 g x_{1}^{-1} \mp\left(\left(l_{2}^{2}-l_{s^{2}}^{2}-2 g x_{1}^{-1}\right)^{2}+4 l_{2}^{2} l_{3}^{2}\right)^{1 / 2}}{2 l_{2} l_{3}} \tag{2.5}
\end{equation*}
$$

Eqs.(2.5) are identical with the differential equations of quasitransverse non-stationary one-dimensional simple waves /3/. The integral curves of quasitransverse stationary twodimensional simple waves are therefore identical with the integral curves of quasitransverse non-stationary one-dimensional simple waves investigated in $/ 3 /$.

Eqs. (2.5) represent in the $l_{2} l_{3}$ plane two mutually orthogonal families of integral curves for the fast and the slow quasitransverse waves. These families of integral curves are shown in Fig.1. The curves have two singular points $l_{3}=0$ and $l_{2}= \pm \sqrt{2 g x_{1}{ }^{-1}}$ on the l_{2} axis. Both families are symmetrical about the coordinate axes. The quantity g has a considerable effect on the form of the integral curves. As we move away from the origin $\left(l_{2}{ }^{2}+\right.$ $l_{3}{ }^{2} \gg 2 g x_{1}^{-1}$), the integral curves of one family approach circles centred at the origin and the integral curves of the other family approach rays. If $g=0$, then all the curves become circles and rays. By (2.4), for media with $x_{1}>0$, ovals are the integral curves of fast waves and lines that go to infinity are the integral curves of slow simple waves. For materials with $\quad x_{1}<0$, the situation is reversed.

Fig. 1

Fig. 2

If the initial strain is of the order of ε, the integral curves are two orthogonal families of curves parallel to the l_{2} and l_{3} axes. This pattern of integral curves is observed in the linear anisotropic case $/ 1,3 /$.

If the rectilinear characteristics of the wave issue from a common point $\left(\xi_{1}{ }^{\circ}, \xi_{2}{ }^{\circ}\right)$, the wave is called centred. Centred flows are selfsimilar: the parameters of the medium in centred flows depend only on the ratio ξ_{1} / ξ_{2} for an appropriate choice of the origin. The criteria for the existence of a continuous selfsimilar solution in the form of a quasitransverse stationary simple wave (the existence of $\Psi<0$) are identical with the nonoverturning criteria for one-dimensional non-stationary simple waves derived in /3/.

For $x_{1}>0$ a continuous selfsimilar solution exists in the form of fast waves with
decreasing $\left|l_{3}\right|$ and slow waves with increasing $\left|l_{3}\right|$ (Fig.1). For $x_{1}<0$, a continuous solution exists in the form of fast and slow waves with decreasing $\left|l_{3}\right|$ (Fig.1).
3. Quasitransverse shock waves. For any dynamic quantity a, the jump across a discontinuity will be denoted by $[a]=a^{+}-a^{-}$, where a^{+}and a^{-}is the value of a behind and in front of the discontinuity.

The conditions on the discontinuity are described in the same way as in /2, 5/, expressing conservation of momentum and energy:

$$
\begin{gather*}
\rho_{0} W^{2} \sin ^{2} \alpha_{1}\left[l_{k}\right]=\left[\frac{\partial \Phi}{\partial l_{k}}\right] \tag{3.1}\\
{[\Phi]=\frac{1}{2}\left[\frac{\partial \Phi}{\partial l_{k}}\right]\left[l_{k}\right]+\left(\frac{\partial \Phi}{\partial l_{k}}\right)^{+}\left[l_{k}\right]}
\end{gather*}
$$

Note that in previous studies /2, 5, 6/ the direction of propagation of the discontinuity was known (the normal to the discontinuity was known) and the dynamic conditions were written in the system of coordinates attached to the discontinuity plane. The study of discontinuities in this paper is more complicated because the discontinuity does not have a fixed direction of propagation (the normal to the discontinuity is unknown). The angle α_{1} between the direction of a vector and the discontinuity plane may be represented in the form $\alpha_{1}=\alpha+\Psi$. The quantity α can be determined in the linear approximation. The quantity Ψ is variable and is of order ε^{2}. The quantities $l_{1}{ }^{\circ}, l_{2}{ }^{\circ}, l_{3}{ }^{\circ}, m_{1}{ }^{\circ}, m_{2}{ }^{\circ}, m_{3}{ }^{\circ}$ defining the initial state of the medium in the coordinate system associated with the angle α change by a quantity of the order of ε^{2} on changing to a coordinate system associated with the angle a_{1}.

The conditions on the discontinuity may be written in explicit form. To this end we expand the function Φ in powers of $\left[l_{k}\right]$ and $[S]$ so that

$$
\left.\Phi=\Phi_{0}+\left(\frac{\partial \Phi}{\partial l_{k}}\right)\left[l_{k}\right]+\rho_{0} T_{0}[S]+\Phi_{1}\left(l_{k}\right]\right)
$$

The function Φ_{1} is the expansion of Φ in powers of $\left[l_{k}\right]$ starting with the second and higher degree, with coefficients that depend on the state in front of the discontinuity. The function Φ_{1} is chosen so that $\left[\partial \Phi / \partial l_{k}\right]=\partial \Phi_{1} / \partial\left[l_{k}\right]$. Then the conditions on the discontinuity (3.1) are written in terms of the function Φ_{1} in the form $/ 5,6 /$

$$
\begin{gather*}
\left(\rho_{0} W^{2} \sin ^{2} \alpha-2 \rho_{0} W^{2} \sin \alpha \cos \alpha \Psi\right)\left[l_{k}\right]=\frac{\partial \Phi_{1}}{\partial\left[l_{k}\right]} \tag{3.2}\\
\rho_{0} T_{0}[S]=\frac{1}{2} \frac{\partial \Phi_{1}}{\partial\left[l_{k}\right]}\left[l_{k}\right]-\Phi_{1} \tag{3.3}
\end{gather*}
$$

The function Φ_{1} does not contain the entropy, and Eqs.(3.2) therefore relate the quantities $\left[l_{1}\right],\left[l_{2}\right],\left[l_{3}\right]$ and Ψ. If we eliminate Ψ, the result is the equation of the shock polar. In the space of displacement gradients l_{1}, l_{2}, l_{3}, the shock polar is the set of states l_{1}, l_{2}, l_{3} which can be reached by a jump from the initial state L_{1}, L_{2}, L_{3} without violating the laws of conservation. Condition (3.3) is used to compute the entropy at the jump, and its right-hand side must therefore be non-negative.

Quasitransverse waves are waves for which $\left[l_{1}\right] \gtrless \max \left(\left[l_{2}\right],\left[l_{3}\right]\right)$. From the jump conditions (3.2) and (3.3) (for quasitransverse waves these conditions relate the quantities $\left[l_{2}\right]$, $\left[l_{3}\right]$ and Ψ), we obtain

$$
\begin{gathered}
\Psi-A^{-2}\left(C^{2}-f+{ }^{1} / 2^{2} x_{1}\left\{l_{2}{ }^{2}+l_{3}^{2}-R^{2}+L_{2} l_{2} \mid L_{3} l_{3}+\right.\right. \\
\left.\left.2 \frac{g x_{1}^{-1}\left(l_{3}-L_{3}\right)^{2}-g x_{1}^{-1}\left(l_{2}-L_{2}\right)^{2}+2\left[\left(l_{2}-L_{2}\right) L_{2}+\left(l_{3}-L_{3}\right) L_{3}\right]^{2}}{\left(l_{2}-L_{3}\right)^{2}+\left(l_{3}-L_{3}\right)^{2}}\right\}\right) \\
R^{2}=L_{2}{ }^{2}+L_{3}{ }^{2}
\end{gathered}
$$

and the equation of the shock polar

$$
\left(l_{2}^{2}+l_{3}^{2}-R^{2}\right)\left(L_{3} l_{2}-L_{2} l_{3}\right)+2 g x_{1}^{-1}\left(l_{2}-L_{2}\right)\left(l_{3}-L_{3}\right)=0
$$

which is identical with the equation of the shock adiabatic of quasitransverse shock waves $/ 5,6 /$. The conditions of evolution and non-decreasing entropy are similar to the corresponding conditions derived in $/ 5,6 /$.

The shock polar is shown in Fig.2, where the sections of the shock polar satisfying the conditions of non-decreasing entropy and evolution are shown by the dash-dot curves for media with $x_{1}>0$ in Fig.2a and for media with $x_{1}<0$ in Fig. 2 b .

I would like to acknowledge the useful comments of A.G. Kulikovskii, E.I. Sveshnikova and A.A. Barmin.

REFERENCES

1. KULIKOVSKII A.G. and SVESHNIKOVA E.I., Non-linear waves in weakly anisotropic elastic media, PMM, 52, 1, 1988.
2. BLAND D.R., Non-linear Dynamic Elasticity Theory, Mir, Moscow, 1972.
3. SVESHNIKOVA E.I., Simple waves in a non-linear elastic medium, PMM, 46, 4, 1982.
4. KULIKOVSKII A.G., On equations desribing the propagation of non-linear quasitransverse waves in a weakly anisotropic elastic body, PMM, 50, 4, 1986.
5. KULIKOVSKII A.G. and SVESHNIKOVA E.I., On shock waves propagating in a stressed state in isotropic non-linear elastic media, PMM, 44, 3, 1980.
6. KULIKOVSKII A.G. and SVESHNIKOVA E.I., Investigation of the shock adiabatic of quasitransverse shock waves in a prestressed elastic medium, PMM, 46, 5, 1982.
7. PUSHKAR E.A., on skew magnetohydrodynamic shock waves, Izv. Akad. Nauk SSSR, MZhG, $4,1978$.
8. PUSHKAR E.A., Generalization of the polar of plane-polarized stationary selfsimilar flows in magnetogydrodynamics, Izv. Akad. Nauk SSSR, MZhG, 3, 1979.
9. BARMIN A.A. and PUSHKAR E.A., Stationary magnetohydrodynamic flow past a non-conducting wedge, in: Problems of Modern Mechanics, Izd. MGU, Moscow, 2, 1983.
10. BURENIN A.A., LAPYGIN V.V. and CHERNYSHOV A.D., Solving plane selfsimilar problems of the non-linear theory of dynamic elasticity, in: Non-linear Deformation Waves, Proceedings of a symposium, Inst. Kiber. Akad. Nauk EstSSR, Tallin, 2, 1978.

STRESS-STRAIN STATES IN A MULTISHEET SURFACE WITH CUTS*

V.V. SIL'VESTROV

The first, second and mixed fundamental boundary-value problems of elasticity theory are considered on an n-sheet Riemann surface with straight-line cuts joining the branch points. The cuts are such that their edges are situated in different planes. Complex potentials are constructed, asymptotic representations of the stresses and derivatives of the displacement components are obtained near the vertices of the cuts and invariant Γ - integrals /l/ are obtained, by the method of reduction to a matrix Riemann boundary-value problem.

The first and second fundamental problems for an $n=2$ Riemann surface were solved $/ 2$ / by the Riemann boundary-value problem method for a Riemann surface. For $n=1$ the results are identical with previously known results for a plane /3/.

1. Statement of the problem. Suppose we have n identical thin homogeneous isotropic elastic infinite plates $E_{1}, E_{2}, \ldots, E_{n}$ of the same thickness and with cuts along the same intervals $l_{j}=\left[a_{j}, b_{j}\right](j=1,2, \ldots, m)$ along the real x axis superimposed on one another so that, for all the plates, cuts with the same numbers are placed above one other. The lower edges of the plate E_{k} are glued to the corresponding upper edges of plate $E_{K+1}(k=1,2, \ldots$, $n-1$). The upper edges of the cuts of E_{1} and the lower edges of E_{n} are not glued together. We shall denote them by L^{+}and L^{-}respectively. If one takes a section perpendicular to
[^1]
[^0]: *Prikl.Matem.Mekhan.,55,3,486-492,1991

[^1]: "PrikZ.Matem.Mekhan., 55,3,493-499,1991

