
396 

7. VFKSLER N-D., KAPLUNOV YU.D. and KORSUNSKII V.M., Asymptotic formulas for resonance 
frequencies in the scattering of a normally incident acoustic wave by a cylindrical 
shell, Akust. Zh., 36, 3, 1990. 

Translated by Z.L. 

J. Appl. Muths Elechs, vol. 55, No. 3, pp. 396-401, 1991 0021-8928/91 $lS.OO+O.OO 
Printed in Great Britain 01992 Pergamon Press Ltd 

STATIONARY ~UAS~TRANSVERSE SIMPLE AND SHOCK WAVES IN A 

WEAKLY ANISOTROPIC NON-LINEAR EtASTIC MEDIUM* 

A.P. CHUGAINOVA 

Two-dimensional stationary simple and shock waves in a weakly 
anisotropic non-linear elastic medium are considered under the same 
assumptions as in /l-6/, which studied one-dimensional non-stationary 
simple and shock waves in a prestrained non-linear elastic medium. 

The standard analysis of stationary simple and shock waves 17-91 in the 
~agnetohydrodyna~ics of a gas with a frozen magnetic field essentially corresponds to a 
special case of an anisotropic elastic medium. Particular plane selfsimilar boundary-value 
problems of shock wave reflection from the boundary of an isotropic non-linear elastic 
half-space were solved numerically in 19, lo/. 

1. Equations describing the behaviour of tao-dSmelu;ional. stationary simple Waves. A 
weakly anisotropic non-linear elastic medium is defined by the elastic potential /l/ 

CD = pou (IQ,, pIk) . . ., . . ., S), 
1 

“if = -j- atl, -f- arl, + q + 
i 

awi aw, 1 
Here lJ is the internal energy of the medium, S is the entropy per unit mass, slj are the 

components of Green's strain tensor, p,, is the density in the unstressed state, pi!.). are 
tensors specifyinq the deviation of the eediun from an isotropic medium, n+ is the displace- 
ment vector and ni are the Lagrangian coordinates (Cartesian right coordinates in the un- 
stressed state); here and henceforth, i,j, k = 1, 2, 3. 

The system of three equations of motion in Lagrangian Cartesian variables has the form 

*i a aQ, 
POata = atl, a(auJ,/aq,) (1.1) 

and is of hyperbolic type. 
We introduce a moving system of coordinates f;l, fe, $8 in which the notion of the system 

is steady. 

where W is a given vector of sufficiently large absolute value. The angle (r defines the 
direction of the vector W relative to the axes n,, n2, %. 

Let 
aw&& = l*, ~Wi/~~~ = m*, aw,iay;, = ai 

We assume that &, mi, ai are functions of the two variables %, and &. Therefore, we 
see from the equalities 
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aa,la& = alila& = 0,.aa&% = ad%.s = 0 
that a, are constant (a, = const) and may occur in the description of the anisotropic proper- 
ties of the medium as parameters. 

Using the above notation, we will rewrite the equations of steady motion in the coordinate 
system $, fz, e, in the form 

= (1.2) 

a2 am 
k=k, a=@ arm 

at ah 
rik = m ( 

I k 
di, = $&- 9 

1 k 
sik = am.am 

, k 

+-bT is the transpose of the matrix dik). The quantities rik, dik, sik, di#’ are computed 
using the given elastic potential @. For a weakly anisotropic elastic medium, the potential 
CD can be represented as the sum of two terms a=@,+@, /l/. The first term describes 
an isotropic non-linear elastic medium without initial strains. The small second term 
describes the deviation of the internal energy of the material from the isotropic energy. 
This term is a function of convolutions of the strain tensor with anisotropy tensors. We 
expand D,. zind oD, in powers of li and mi: 

a, = ‘l,hr,2 + PI, + BIll2 + $8 + VI, + u** + . . . (1.3) 
+ POT, (S - So) 

I, = Eii, I, = Ei,Sij, I, = SijS,kEki 

a, = B,l,2 + BJ,’ + B,lsa + BJJ, + B&Z, + B&, + B,m,2 + 
B,m,’ + B,m,Z + Blom,m, + B,,m,m3 + B,,m,m, 

Here h, IL, B, Y, v and E are the elastic moduli of the medium and Bi are constants associated 
with the anisotropy of the material. We shall assume that Bi are of the order of S(6<1 
is the anisotropy parameter). 

For the system of Eqs.tl.2) we will seek a solution in the form of a two-dimensional 
stationary simple wave, i.e., such that Z: = Z, (0 (&, &)), .mi = mi (0 (E,, &J), ai = const (0 is a 
function of its arguments), and the entropy S is constant (&S/a&i = 0). This leadsto a 
system of ordinary differential equations for li and m, (bik is the Kronecker delta) 

(C,Tiik - b,,)dl,ldEJ = 0, dm,ldO = -Ydl,ld0 

(Y = -(aeiaw(aeiaE,) = -(d$id$k 

Cl2 = C - 2p,W* sin a cos a Y + pow3 cos2 a Y2 

C = p,,W* sin2 a, bik = Tik - (dik + dik’ )Y $- Siky’) 

(1.4) 

Let us fix a by a special choice of the axes ql,qz,qs so that in the corresponding axes 

g,, Ez, ss we have the equality Y = 0 on the first characteristic. This choice of the axes 
is possible if the determinant of system (1.41, treated as a polynomial in I, has at least 
one real root. 

If the elastic medium is linear, the coefficients of the system of Eqs.tl.4) are constant 
and the equality Y = 0 therefore holds on all the characteristics of the system of Eqs.tl.2). 
Then, first, we see from the second equation in (1.4) that the quantities mi are constant 
in the wave. Second, noting that Xi/a&= 0, we conclude that li depend only on a single 
variable E1, and therefore the direction of wave propagation is known (the normal to the 
characteristics - the axis E, - is known). The system of six Eqs.tl.4) reduces to a system 
of three equations for li, 

(Psik - ri,)dZk /de = 0 

The condition for the determinant of this system to be zero is a cubic equation in C2 
and for a given W it is used to find the angle a. Note that the restrictions on a are a 
consequence of the previous requirement Y = 0. The quantity C is the characteristic 
velocity relative to the medium when the normal to the characteristic is in the direction of 
the & axis. Since r<, = const, we have c = eonst. 

If the medium is linear and isotropic, the matrix ()rik)) has the form r11 = h + 2P. 
r*2 = r3~ = p, rij = 0 for i#j. For transverse waves a = arcsin I/plp,Wz, and for longitudinal 

waves a = arcsin I/(h + 2y)lp0W2'. 
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If the elastic medium is weakly anisotropic and weakly non-linear, then Y (11, z,, I,, m,, 

m,, m3) is small and the square of the characteristic velocity relative to the medium C,z 
varies. The wave does not have a unique fixed direction of propagation (the normal to the 
characteristic is variable), but due to the smallness of non-linearity we may assume that the 
main variation of the parameters in a simple wave is in the direction of the & axis, i.e., 
Zi are essentially variable in the wave, while mi do not change much (this will be proved 

below). 

2. Two-dimensiona stationary simple quasitransverse waves. Quasitransverse waves are 
waves in which the ratio of the change in the longitudinal component (11) and the transverse 
component (Z,,l,) is a small quantity of the order of the initial shear strain /3/. 

Let the strains 1, produced by the passage of waves in the medium be small quantities 

of order not exceeding e. Then Y = 0 (e2), because the change in the characteristic 
velocity relative to the medium AC2 = Cf2-- Ci is of the order of ~~/2, 3/ and Yis related 

to the change in the characteristic velocity. From the second equation in (1.4) we see that 

the order of change of mi is G. We introduce the smallness parameter x = max (E’, IS), where 

(6 < 1 is the anisotropy parameter /4/, and in the system of Egs.tl.4) we allow only for 

terms of order not exceeding EX. Then the three equations for Zi in system (1.4) can be 

solved independently. The quantities mi, together with ai, may be used to describe the 

anisotropic properties of the medium. 
For the variable Y we obtain the equation 

/C,2& - bik I = 0 (2.1) 

For quasitransverse waves, we can eliminate the longitudinal component li by expressing 

it approximately in terms of the components l2 and la, as in /4/. To prove this statement, 

let 

b,, = bike + gi, 

where bike is the matrix corresponding to a linear isotropic medium. From (1.4) for i=l 

we obtain 
CiVl,ii% = b,&Jc%3 (2.2) 

For quasitransverse waves we may approximately take Ci2 = p + O(x), because, first, Y 

is small and, second, 

where the superscript 
rewrite the equations 

c2 = p for transverse waves. Then from (2.2) we have 

p$=(h+2p)$+g&+ g,,;; 

1, = - *. $ + l,O, I,” = const 

0 relates to the state in front of the wave. Using this equality, we 

of motion (1.4) in the form 

C&=(&,+hBy)+-&~, p,v=2,3 (2.3) 

Q= 

This system of equations contains two equations for lz and 2,. For a medium with aniso- 

tropic (l-3), the two-dimensional potential can be represented in the form /l/ 

(f=P+B,+B,-$g, g=B,-B,++&$, 

The change of state in the wave may be demonstrated in the l,l, plane. Therefore, by 
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rotating the coordinate axes in this plane, we can eliminate the term %M, in the expression 
for the elastic potential F /I/. The potential F thus takes the form 

F = l/z (f + g*) 12 *a + Vz (f - g*) z,*2 - '/*x1 (zz*z + L3*2)2 

where g* = (g2 + s,~)'/x, 12* = -la sin 'p + l2 cos 'p 

Z,* = L3 cos 'p + 2, sin (p, tg 2q = -qg 

The asterisk will be omitted in what follows. 
The constants f, g, xi have the following physical meaning: the small quantity g is the 

anisotropy parameter, f is the characteristic velocity when there is no non-linearity and 
anisotropy and xi is the elastic constant characterizing the non-linear properties of the 
medium in quasitransverse waves. 

For the simplified system of Eqs.(2.3), condition (2.1) is rewritten in the form 

H h-C,= hm aaF 
ha hss - C,' =o; h@y= algaly I B, y = 2,3 

Solving the quadratic equation for Y, we obtain 

Y ,, 2 = A-* (CZ - f + x, (122 + 1,s + l/2 ((Z32 - 122 $ 2gx,-‘)2 + 42&2)'9) (2.4) 

We see from (2.41, that Y, and Yz differ from each another by a quantity of the order 
of x. The indexing of Ii is such that Yi>Y, and we correspondingly distinguish between 
fast quasitransverse waves (YJ and slow quasitransverse waves (Yz). 

The differential equations for the integral curves of quasitransverse stationary simple 
waves are obtained from the system of Eqs.(2.2) using (2.4): 

Eqs.(2.5) are identical with the differential equations of quasitransverse non-stationary 
one-dimensional simple waves /3/. The integral curves of quasitransverse stationary two- 
dimensional simple waves are therefore identical with the integral curves of quasitransverse 
non-stationary one-dimensional simple waves investigated in /3/. 

Eqs.12.5) represent in the lzls plane two mutually orthogonal families of integral 
curves for the fast and the slow quasitransverse waves. These families of integral curves 
are shown in Fig.1. The curves have two singular points 1, = 0 and 1, = +1/2g~,-~ on the 
1, axis. Both families are symmetrical about the coordinate axes. The quantity g has a con- 
siderable effect on the form of the integral curves. As we move away from the origin (V + 
198 > 2gx,‘) , the integral curves of one family approach circles centred at the origin and 
the integral curves of the other family approach rays. If g = 0, then all the curves become 
circles and rays. By (2.4), for media with x,>O, ovals are the integral curves of fast 
waves and lines that go to infinity are the integral curves of slow simple waves. FM materia 
with x,<o, the situation is reversed. 

IS 

Fig.1 Fig.2 

If the initial strain is of the order of e, the integral curves are two orthogonal 
families of curves parallel to the 1, and 1, axes. 
observed in the linear anisotropic case /l, 3/. 

This pattern of integral curves is 

If the rectilinear characteristics of the wave issue from a common point 
wave is called centred. 

(510, EzO), the 
Centred flows are selfsimilar: the parameters of the medium in 

centred flows depend only on the ratio S&2 for an appropriate choice of the origin. The 
criteria for the existence of a continuous selfsimilar solution in the form of a 
transverse stationary simple wave (the existence of 

quasi- 
Y < 0) are identical with the non- 

overturning criteria for one-dimensional non-stationary simple waves derived .in/3/. 
For xi > 0 a continuous selfsimilar solution exists in the form of fast waves with 
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decreasing ) l,I and slow waves with increasing ( Z31 (Fig.1). For x,<o, a continuous 
solution exists in the form of fast and slow waves with decreasing ) l3 1 (Fig.1). 

3. @uxsitransverse shock waves. For any dynamic quantity a, the jump across a dis- 
continuity will be denoted by [al == a+ -a-, where a+ and a- is the value of a behind and 
in front of the discontinuity. 

The conditions on the discontinuity are described in the same way as in /2, 5/, expressing 
conservation of momentum and energy: 

(3.1) 

Note that in previous studies f2, 5, 6/ the direction of propagation of the discontinuity 
was known (the normal to the discontinuity was known) and the dynamic conditions were written 
in the system of coordinates attached to the discontinuity plane. The study of discontinuities 
in this paper is more complicated because the discontinuity does not have a fixed direction 
of propagation (the normal to the discontinuity is unknown). The angle a, between the 
direction of a vector and the discontinuity plane may be represented in the form a, = a $ Y. 
The quantity a can be determined in the linear approximation. The quantity Y is variable 
and is of order ea. The quantities l,', 12", I,', m,‘, q”, m3’ defining the initial state of the 
medium in the coordinate system associated with the angle a change by a quantity of the 
order of sa on changing to a coordinate system associated with the angle ai. 

The conditions on the discontinuity may be written in explicit form. To this end we 
expand the function @ in powers of [Zr] and IS] so that 

The function @i is the expansion of @ in powers of [I,) starting with the second 
and higher degree, with coefficients that depend on the state in front of the discontinuity. 
The function @, is chosen so that [8@/i3Zk] = m,/a[lk]. Then the conditions on the discontinuity 
(3.1) are written in terms of the function 0, in the form /5, 6/ 

(p,Wasin2a-2p~WBsinacosaY)[1,] = $J 

PJO [Sl = + J$J- Pkl - @I 

(3.2) 

(3.3) 

The function a, does not contain the entropy, and Eqs.(3.2) therefore relate the 
quantities II,], &I, IZ,l and Y. If we eliminate Y, the result is the equation of the 
shock polar. In the space of displacement gradients 11, 12, 13, the shock polar is the set of 
states I,, l,, l3 which can be reached by a jump from the initial state L,, LI, L3 without 
violating the laws of conservation. Condition (3.3) is used to compute the entropy at the 
jump, and its right-hand side must therefore be non-negative. 

Quasitransverse waves are waves for which II,1 ((max (R,l, W. From the jump conditions 
(3.2) and (3.3) (for quasitransverse waves these conditions relate the quantities [Zzl, kl 
and 'Y), we obtain 

Y = A-2 (cz - f + l/& { z,a + z,a - R2 + L,Z, + L&, + 

2 gx;l (IJ - Ls)‘- gQ(1, - w + 2 [(ln - La) Ls + (28 - w LSI' 
(In- .W + (Is- V 
R2 = LZZ + L,* 

and the equation of the shock polar 

which is identical with the equation of the shock adiabatic of quasitransverse shock waves 
/5, b/. The conditions of evolution and non-decreasing entropy are similar to the correspond- 
ing conditions derived in 15, 61. 

The shock polar is shown in Fig.2, where the sections of the shock polar satisfying the 
conditions of non-decreasing entropy and evolution are shown by the dash-dot curves for media 
with x1 > 0 in Fig.la and for media with xi (0. in Fig.2b. 



401 

I would like to acknowledge the useful comments of A.G. Kulikovskii, E.I. Sveshnikova 
and A.A. Barmin. 

REFERENCES 

1. KULIKOVSKII A.G. and SVESHNIKOVA E.I., Non-linear waves in weakly anisotropic elastic 
media, PMM, 52, 1, 1988. 

2. BLAND D.R., Non-linear Dynamic Elasticity Theory, Mir, Moscow, 1972. 
3. SVESHNIKOVA E.I., Simple waves in a non-linear elastic medium, PMM, 46, 4, 1982. 
4. KULIKOVSKII A.G., On equations desribing the propagation of non-linear quasitransverse 

waves in a weakly anisotropic elastic body, PMN, 50, 4, 1986. 
5. KULIKOVSKII A.G. and SVESHNIKOVA E.I., On shock waves propagating in a stressed state in 

isotropic non-linear elastic media, PMM, 44, 3, 1980. 
6. KULIKOVSKII A.G. and SVESHNIKOVA E.I., Investigation of the shock adiabatic of quasi- 

transverse shock waves in a prestressed elastic medium, PMM, 46, 5, 1982. 
7. PUSHKAR E.A., On skew magnetohydrodynamic shock waves, Izv. Akad. Nauk SSSR, MZhG, 4, 1978. 
8. PUSHKAR E.A., Generalization of the polar of plane-polarized stationary selfsimilar flows 

in magnetogydrodynamics, Izv. Akad. Nauk SSSR, MZhG, 3, 1979. 
9. BARMIN A.A. and PUSHKAR E.A., Stationary magnetohydrodynamic flow past a non-conducting 

wedge, in: Problems of Modern Mechanics, Izd. MGU, Moscow, 2, 1983. 
10. BURENIN A.A., LAPYGIN V.V. and CHERNYSHOV A.D., Solving plane selfsimilar problems of the 

non-linear theory of dynamic elasticity, in: Non-linear Deformation Waves, Proceedings 
of a symposium, Inst. Kiber. Akad. Nauk EstSSR, Tallin, 2, 1978. 

Translated by Z.L. 

J. A&. bkfth~ k&S, Vol. 55, No. 3, pp. 401-406, 1991 0021-8928/91 $15.00+0.00 
01992 Pergamon Press Ltd Printed in Great Britain 

STRESS-STRA IN STATES IN A MULTISHEET SURFACE WI TH CUTS* 

V.V. SIL'VESTROV 

The first, second and mixed fundamental boundary-value problems of 
elasticity theory are considered on an n-sheet Riemann surface with 
straight-line cuts joining the branch points. The cuts are such that 
their edges are situated in different planes. Complex potentials are 
constructed, asymptotic representations of the stresses and derivatives 
of the displacement components are obtained near the vertices of the 
cuts and invariant I- integrals /l/ are obtained, by the method of 
reduction to a matrix Riemann boundary-value problem. 

The first and second fundamental problems for an n=2 Riemann 
surface were solved /2/ by the Riemann boundary-value problem method for 
a Riemann surface. For n= 1 the results are identical with previously 
known results for a plane /3/. 

1. Statement of the probtem. Suppose we have n identical thin homogeneous isotropic . . . . 
elastic infinite plates E,,E& . . . . E,, of the same thickness and with cuts along the same 
intervals 1, = [a,, b,] (j = 1, 2, . . ., m) along the real x axis superimposed on one another so 
that, for all the plates, cuts with the same numbers are placed above one other. The lower 
edges of the plate Ex are glued to the corresponding upper edges of plate EK+l (k = 1, 2, . . ., 
n - 1). The upper edges of the cuts of El and the lower edges of E, are not glued together. 
We shall denote them by L+ and L- respectively. If one takes a section perpendicular to 


